Instabilities for a relativistic electron beam interacting with a laser-irradiated plasma.

نویسندگان

  • Hrachya B Nersisyan
  • Claude Deutsch
چکیده

The effects of a radiation field (RF) on the unstable modes developed in a relativistic electron beam-plasma interaction are investigated assuming that ω(0) > ω(p), where ω(0) is the frequency of the RF and ω(p) is the plasma frequency. These unstable modes are parametrically coupled to each other due to the RF and are a mix between two-stream and parametric instabilities. The dispersion equations are derived by the linearization of the kinetic equations for a beam-plasma system as well as the Maxwell equations. In order to highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. Assuming that the drift velocity u(b) of the beam is parallel to the wave vector k of the excitations two particular transversal and parallel configurations of the polarization vector E(0) of the RF with respect to k are considered in detail. It is shown that in both geometries resonant and nonresonant couplings between different modes are possible. The largest growth rates are expected at the transversal configuration when E(0) is perpendicular to k. In this case it is demonstrated that, in general, the spectrum of the unstable modes in the ω-k plane is split into two distinct domains with long and short wavelengths, where the unstable modes are mainly sensitive to the beam or the RF parameters, respectively. In the parallel configuration, E(0)∥k, and at short wavelengths the growth rates of the unstable modes are sensitive to both beam and RF parameters remaining insensitive to the RF at long wavelengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion

In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...

متن کامل

Energy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion

In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...

متن کامل

Influence of laser polarization on collective electron dynamics in ultraintense laser–foil interactions

The collective response of electrons in an ultrathin foil target irradiated by an ultraintense (∼6 × 1020 W cm−2) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting...

متن کامل

اثر کانال یونی بر خودکانونی شدن پالس لیزری گاؤسی در پلاسماهای کم چگال

 We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. T...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012